Significant Figures, Rounding and Scientific Notation
Worksheet

Significant Figures:
- Use significant figures to deal with uncertainty in numbers and calculations.

Rules:
(a) All non-zero integers are considered significant. (5.56 ----> 3 sig figs)
(b) Zero integers depend on the position within the number:
 (1) **Leading Zero:** Not significant (only positions the decimal point). (0.0041 ----> 2 sf)
 (2) **Captive Zero:** Significant (14.301 ----> 5 sf).
 (3) **Trailing Zero:** Significant only if decimal is present.
 (250.40 ----> 5 sf, 3750 ----> 3 sf)
(c) Exact Numbers: contain unlimited significant figures by definition.
 (i.e.: 3 vipers, 21 students, etc.)

Rounding
- Need to round the final answer in calculations to reflect the proper # of sig figs.

Rules: If the number following the last significant digit allowed in the answer is:
 (1) less than 5 ----> keep the last sf digit the same and do not round up.
 (2) greater than 5 ----> round the last sf digit up.
 (3) exactly equal to 5 ----> make the last sf digit even (leave alone or round up)

Calculations using Significant Figures
* The rules for carrying uncertainty through mathematical calculations involve significant figures and depend on the type of calculation being performed:

Multiplication or Division:
- The final answer is limited to the same # of sig figs as the value with the fewest # of sig figs used in the calculation.

Addition, Subtraction and Averages:
- The final answer is limited to the same # of decimal places as the value with the fewest # of decimal places used in the calculation.
- When doing calculations, it's most accurate to round only the final answer (but can be trickier to follow sf's).
 It is always a good idea to indicate more than the correct number of significant figures in an intermediate result, before you round off the number. To do so, you draw a vertical dashed line separating the significant digits from the extra non-significant digits.

 i.e.: To represent 3 sig figs, 1.06¦77 g

Scientific Notation
- Used for ease in dealing with very large or small numbers. Converts it into a number between 1 and 10 times a power of ten:
 i.e.: value x 10^n
 * All non-significant digits are removed from the value when converted to scientific notation

 57,000,000,000,000 = 5.7 x 10,000,000,000,000 = 5.7 x 10^{13}

 0.000035 = 3.5 x 10^{-5}
 5000 = 5 x 10^3
- If decimal is moved to the left ----> + exponent of 10
- If decimal is moved to the right ----> – exponent of 10
Problems:

1) Determine the number of significant figures in the following values:
 a) 140.74 mL -------->
 f) 4 aardvarks -------->
 b) 0.0041 g -------->
 g) 3.70 x 10^{14} pg -------->
 c) 31.00 mm -------->
 h) 1.05 x 10^{12} -------->
 d) 1300 nm -------->
 i) 7.0400 x 10^{3} m -------->
 e) 847.040 lb -------->
 j) 2495 miles -------->

2) Round the following values to 3 significant figures:
 a) 3.76411 -------->
 f) 0.0411984 -------->
 b) 3.76811 -------->
 g) 150.6142 -------->
 c) 3.76511 -------->
 h) 0.013877 -------->
 d) 11.048176 -------->
 i) 4.88223 x 10^{9} -------->
 e) 8.75510 -------->
 j) 2.0097 x 10^{-12} -------->

3) Perform the following unitless calculations and round the final answer to the proper number of sig figs:
 a) 18.7644 − 3.472 + 0.4101 =
 f) 0.87 + 4.061 + 10.4 =
 b) 17.441 ÷ 3 =
 g) 16 x 841.4 ÷ 16.300 =
 c) 14.044 + 8.11 + 3.4 =
 h) 21.01 x 2.0 =
 d) 3.41 − 0.086652 =
 e) Calculate the average of the following set of values: 18.4, 12.99, 13.772 and 9.704

4) Convert the following values into scientific notation, or if given in scientific notation, convert back to a regular number:
 a) 47,000 -------->
 b) 0.0008 -------->
 c) 675,000,000 -------->
 d) 157,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000 -------->
 e) 0.0000003407 -------->
 d) 7.66 x 10^{-2} -------->
 e) 7.8 x 10^{5} -------->
 h) 4.75 x 10^{-4} -------->
 f) 6 x 10^{-3} -------->
 g) 9 x 10^{8} -------->
 j) 6.022 x 10^{23} (a mole) -------->