Modern Atomic Theory

Chapter 10

10.1 Rutherford’s Atom

Rutherford showed:
- Atomic nucleus is composed of protons (positive) and neutrons (neutral).
- The nucleus is very small compared to the size of the entire atom.

Questions left unanswered:
- How are e’s arranged and how do they move?

10.2 Electromagnetic Radiation

- Electromagnetic radiation is radiant energy, both visible and invisible.
- Electromagnetic radiation given off by atoms when they have been excited by any form of energy
 - light bulbs
Electromagnetic radiation is radiant energy, both visible and invisible.

Electromagnetic radiation given off by atoms when they have been excited by any form of energy:
- light bulbs
- flame tests

Electromagnetic radiation travels in waves.

All waves are characterized by:
- Wavelength, \(\lambda \): distance between two consecutive peaks or troughs in a wave
 - measured in nanometers (1 nm = 10^{-9} m)
 - same distance for troughs

Wavelength, \(\lambda \): distance between two consecutive peaks or troughs in a wave.

Frequency, \(\nu \): the number of waves that pass a point in space in one second.

Hertz (Hz) = wave/sec

Hz = sec^{-1}
10.2 Electromagnetic Radiation

- Electromagnetic radiation travels in waves.
- All waves are characterized by:
 - Wavelength, \(\lambda \)
 - Frequency, \(\nu \)
 - Amplitude, \(A \): measure of the intensity of the wave, "brightness"
 - Height of the waves
 - Velocity, \(c \): speed of light
 \[c = 2.997925 \times 10^8 \text{ m/s} \]
- All types of light energy travel at the same speed.

\[c = \lambda \times \nu \]

10.2 Electromagnetic Radiation

- Radiowaves
- Microwaves
- Infrared (IR)
- Visible
- Ultraviolet (UV)
- X-rays
- Gamma rays

Light can have wave and particle-like nature.
- Photons: tiny particle-like packets of energy.
- Photons of light are quantized:
 - have fixed amounts of energy
 - \(E_{\text{photon}} \propto \nu \)
 - Higher frequency = More energy in photons.
10.3 Emission of Energy by Atoms

- Atoms which have gained extra energy release that energy in the form of light.

- The light given off or gained is of very specific wavelengths called a line spectrum.
 - Light given off = emission spectrum
 - Light energy gained = absorption spectrum

- Each element has its own line spectrum which can be used to identify it.
 - H₂ emission spectrum:
 - 410 nm, 434 nm, 486 nm, 656 nm

- All samples of an element give the exact same pattern of lines:
 - Every atom of that element must have identical energy states.

- The energy of atoms is quantized:
 - If the atom could have all possible energies, then the result would be a continuous spectrum instead of lines.
10.4 The Energy Levels of Hydrogen

- All samples of an element give the exact same pattern of lines.
- The energy of atoms is quantized.

10.5 Bohr’s Model of the Atom

- Energy of atom is related to the distance electrons are from the nucleus.
- Energy of the atom is quantized.
 - Atom can only have certain specific energy states called quantum levels or energy levels.
 - When atom gains energy, electron “moves” to a higher quantum level.
 - When atom loses energy, electron “moves” to a lower energy level.
 - Lines in spectrum correspond to the difference in energy between levels.

Ground state:

- The ground state of H corresponds to having its electron in an energy level that is closest to the nucleus.

Excited states:

- The farther an electron is from the nucleus, the higher its energy.
10.5 Bohr’s Model of the Atom

- To put an e⁻ in an excited state requires the addition of energy to the atom.
- Bringing the e⁻ back to the ground state releases energy in the form of light.
- Distances between energy levels decreases as the energy increases.
 - Light given off in a transition from the 2nd energy level to the 1st has a higher energy than light given off in a transition from the 3rd to the 2nd, etc.

10.5 Bohr’s Model of the Atom

- Electrons "orbit" the nucleus much like planets orbiting the sun.
- Each energy level can hold $2n^2$ e⁻.
 - 1st: 2 e⁻
 - 2nd: 8 e⁻
 - 3rd: 18 e⁻, etc.
- Farther from nucleus = more space = less repulsion.
- **Valence shell:**

10.5 Bohr’s Model of the Atom

- The problems with Bohr’s Model:
 - Only explains hydrogen atom spectrum and other 1 e⁻ systems.
 - Neglects interactions between electrons.
 - Assumes circular or elliptical orbits for e⁻, which is not true.
10.6 Wave Mechanical Model
- Experiments later showed that e^- could be treated as waves
 - just as light energy could be treated as particles
- Schrödinger Wave Equation: uses wave mathematics to calculate probability densities of finding the e^- in a particular region in the atom
 - can only be solved for simple systems, but approximated for others

10.7 Hydrogen Orbitals
- Orbitals:
 - usually use 90% probability to set the limit
 - three-dimensional
- Quantum numbers:

10.7 Hydrogen Orbitals
- Principal energy levels, n,
 - higher values mean orbital has higher energy
 - higher values mean orbital has farther average distance from the nucleus
10.7 Hydrogen Orbitals

- Each principal energy level contains one or more sublevels
 - there are \(n \) sublevels in each principal energy level
 - each type of sublevel has a different shape & energy
 - \(s < p < d < f \)

10.7 Hydrogen Orbitals

- Each sublevel contains one or more orbitals
 - \(s = 1 \) orbital
 - \(p = 3 \) orbitals
 - \(d = 5 \) orbitals
 - \(f = 7 \) orbitals

10.8 More Wave Mechanical Model

Pauli Exclusion Principle

- No orbital may have more than 2 \(e^- \)
- **Degenerate:**
 - each \(p \) sublevel has 3 degenerate \(p \) orbitals
 - each \(d \) sublevel has 5 degenerate \(d \) orbitals
 - each \(f \) sublevel has 7 degenerate \(f \) orbitals
 - \(s \) sublevel holds 2 \(e^- \)
 - \(p \) sublevel holds 6 \(e^- \)
 - \(d \) sublevel holds 10 \(e^- \)
 - \(f \) sublevel holds 14 \(e^- \)
- \(e^- \) in the same orbital must have opposite spins
10.9 Electron Arrangements

Electronic configuration

H: 1s^1
He: 1s^2
Li: 1s^2 2s^1

Orbital diagram:

H: \[\uparrow \]
He: \[\uparrow \downarrow \]
Li: \[\uparrow \downarrow \] \[\uparrow \downarrow \]

10.9 Electron Arrangements

Orbital diagrams:

H:
He:
Li:
Be:
B:

Hund’s Rule:
10.9 Electron Arrangements

- Write the electronic configuration & orbital diagram for sodium and magnesium

- If we look at the orbital of the highest energy for each element, we see a periodic trend:

10.10 Periodic Trends
10.10 Periodic Trends

Principle energy level
- For s & p block, n = row number
- For d block, n = row number - 1
- For f block, n = row number - 2

10.10 Periodic Trends
- Write the electronic configuration of zinc

10.10 Periodic Trends
- Write the electronic configuration of palladium
10.10 Periodic Trends

- Write the electronic configuration of mercury

Valence shell:
- Core e\(^{-}\)s
- Noble gas core:
 - Ne: 1s\(^2\)2s\(^2\)2p\(^6\)
 - Mg: [Ne]3s\(^2\)

Write the short-hand elec. config. for:
- Manganese
- Iodine

10.10 Periodic Trends

- Elements in the same column on the Periodic Table have
 - Similar chemical and physical properties
 - Similar valence shell electron configurations
 - Same numbers of valence electrons
 - Same orbital types
 - Different energy levels
10.11 Atomic Properties

Metals
- malleable & ductile
- shiny, lustrous
- conduct heat & electricity
- most oxides basic & ionic
- form cations & oxidation

Metalloids
- also known as semi-metals
- show some metal & some nonmetal properties

Nonmetals
- solids are brittle
- dull
- electrical & thermal insulators
- most oxides are acidic & molecular
- form anions & polyatomic anions
- reduced rxns

10.11 Atomic Properties

Ionization Energy

- The lower the IE, the easier it is to remove the e-
- metals have low IE
- IE decreases down the group
- valence electron farther from nucleus

10.11 Atomic Properties

Ionization Energy:

- IE increases left to right across the period
 - Na: [Ne]3s¹ → Na⁺: [Ne] + e⁻
 - Cl: [Ne]3s²3p⁵ → Cl⁻: [Ne]3s²3p⁶ + e⁻
- Reactivity of metals increases to the left on the Period and down in the column
- follows ease of losing an e⁻
 - Na: [Ne]3s¹ → Na⁺: [Ne] + e⁻
 - Mg: [Ne]3s² → Mg²⁺: [Ne]3s² + e⁻ → Mg²⁺: [Ne] + 2e⁻
10.11 Atomic Properties

Periodic trend in atomic size
- Increases down column
 - valence shell farther from nucleus
- Decreases left to right across period
 - adding electrons to same valence shell
 - valence shell held closer because more protons in nucleus

10.11 Atomic Properties

Electron Affinity:
- Reactivity of nonmetals (excluding the noble gases) increases to the right on the Period and up in the column
 - Follows ease of attracting \(e^- \)
 - \(\text{Cl}: [\text{Ne}]3s^23p^5 + e^- \rightarrow [\text{Ne}]3s^23p^6 \rightarrow \text{Cl}^- : [\text{Ar}] \)
 - \(\text{S}: [\text{Ne}]3s^23p^5 + e^- \rightarrow [\text{Ne}]3s^23p^6 \)

Diagram showing the periodic table and electron configurations.