Central nervous system

- Many congenital malformations of the CNS result from incomplete closure of the neural tube.

Anencephaly

Central nervous system

- the most common neural tube defect
- Anencephaly - means absence of the brain
 - caused by failure of closure of the neural tube at the cranial end.
- recurrence risk 2% to 3% for woman with a history of a prior pregnancy with an open neural tube defect.

Anencephaly

- absence of the cranial vault
- complete or partial absence of the forebrain
 - may partially develop and then degenerate
- the presence of the brainstem, midbrain, skull base, and facial structures.

Anencephaly

- Anencephaly may result from
 - a syndrome such as Meckel-Gruber
 - a chromosomal abnormality such as trisomy
- increased risk in patients with diabetes mellitus
- teratogens associated with NTD
 - High levels of zinc
 - Methotrexate
 - folate and vitamin deficiencies

Anencephaly

- Anencephaly is a lethal disorder
 - up to 50% of cases resulting in fetal demise
 - The remainder die at birth or shortly thereafter.
Anencephaly
Central nervous system
• Anencephaly may be detected with ultrasound as early as 10 to 14 weeks

Anencephaly
Central nervous system
• Second trimester identification of anencephaly is more obvious
 – absent cerebral hemispheres evident as well as absence of the skull.

Anencephaly
Central nervous system
• Polyhydramnios
 – 40% to 50% of cases present after 26 weeks
• Additional anomalies include
 – cleft lip and palate
 – Hydronephrosis
 – diaphragmatic hernia
 – cardiac defects
 – Omphalocele
 – gastrointestinal defects
 – talipes.

Acrania
Central nervous system
• Lethal anomaly that manifests as absence of the cranial bones with the presence of complete development of the cerebral hemispheres.

Acrania
Central nervous system
• Begins in the fourth gestational week
• progresses to anencephaly
 – the brain slowly degenerates as a result of exposure to amniotic fluid.

Acrania
Central nervous system
• Presence of brain tissue without the presence of a calvarium
• Prominent sulcal markings
Acrania
Central nervous system
- associated anomalies
 - spinal defects
 - cleft lip and palate
 - talipes, cardiac defects
 - omphalocele
- has been associated with amniotic band syndrome

Cephalocele
Central nervous system
- cephalocele
 - a neural tube defect in which the meninges alone or meninges and brain herniate through a defect in the calvarium

Cerebral Meningeal Agenesis
Central nervous system
- Encephalocele
 - term used to describe herniation of the meninges and brain through the defect
- cranial meningocele
 - describes the herniation of only meninges

Cephalocele
Central nervous system
- Cephaloceles involve the occipital bone and are located in the midline in 75% of cases
- they also may involve the parietal and frontal regions

Cephalocele
Central nervous system
- The presence of brain in the defect, microcephaly, and other anomalies worsens the prognosis
- isolated cranial meningocele may have a normal outcome

Cephalocele
Central nervous system
- Sonographic
 - A bony defect in the skull
 - Ventriculomegaly
 - Polyhydramnios
- Cephaloceles located off midline are usually the result of amniotic band syndrome
Cephalocele
Central nervous system
• Coexisting anomalies
 – Microcephaly
 – agenesis of the corpus callosum
 – facial clefts
 – spina bifida
 – cardiac anomalies
 – genital anomalies.

Cephalocele
Central nervous system
• Chromosomal anomalies and syndromes
 – trisomy 13
 – Meckel-Gruber syndrome, which is an autosomal-recessive disorder characterized by encephalocele
 – Polydactyly
 – polycystic kidneys.

Spina Bifida
Central nervous system
• wide range of vertebral defects that result from failure of neural tube closure.
• meninges and neural elements may protrude through this defect.
• may occur anywhere along the vertebral column
 – most commonly occurs along the lumbar and sacral regions.

Spina Bifida
Central nervous system
• the second most common open neural tube defect.
• When covered with skin or hair, it is referred to as spina bifida occulta
• If the defect is very large and severe, it is termed rachischisis. Ψ

Spina Bifida
Central nervous system
• When the defect involves only protrusion of the meninges, it is termed a meningocele.
• More commonly the meninges and neural elements protrude through the defect and are termed a meningomyelocele.

Spina Bifida
Central nervous system
• Fetuses with myelomeningoceles often present with the cranial defects associated with the Arnold-Chiari (type II) – 90%
 – presents with hydrocephalus
• the cerebellar vermis, which becomes displaced into the cervical canal.
 – giving it a “banana” appearance Ψ
Spina Bifida
Central nervous system

- caudal displacement of the cranial structures causes scalloping of the frontal bones of the skull

Spina Bifida
Central nervous system

- Sonographic features of spina bifida include
 - Splaying of the posterior ossification centers with a V or U configuration
 - Protrusion of a saclike structure that may be anechoic or contain neural elements
 - cleft in the skin

Spina Bifida
Central nervous system

- associated findings include
 - Talipes
 - Cephaloceles
 - cleft lip and palate
 - Hypotelorism
 - heart defects
 - genitourinary anomalies.

Dandy-Walker Malformation
Central nervous system

- agenesis or hypoplasia of the cerebellar vermis with resulting dilation on the fourth ventricle.
 - thought to occur before the sixth or seventh gestational week

Dandy-Walker Malformation
Central nervous system

- associated with other intracranial anomalies - 50% of the time.
 - agenesis of the corpus callosum
 - aqueductal stenosis
 - Microcephaly
 - Macrocephaly
 - Encephalocele
 - gyral malformations
 - lipomas.

Dandy-Walker Malformation
Central nervous system

- associated extracranial anomalies
 - Cardiac
 - Polydactyly
 - facial clefts
 - urinary tract

- associated Chromosomal anomalies
 - trisomies 13, 18, and 21.
Dandy-Walker Malformation

Central nervous system

- Imaging characteristics
 - posterior fossa cyst
 - Splaying of the cerebellar hemispheres
 - enlarged cisterna magna
 - Ventriculomegaly

Holoprosencephaly

Central nervous system

- a range of abnormalities resulting from abnormal cleavage of the prosencephalon (forebrain)
 - three forms of holoprosencephaly
 - alobar - most severe form
 - semilobar intermediate form
 - lobar and the mildest form.

Holoprosencephaly

Central nervous system

- Alobar is characterized by
 - a monoventricle
 - brain tissue that is small and may have a cup, ball, or pancake configuration
 - fusion of the thalamus
 - absence of the interhemispheric fissure, cavum septum pellucidum, corpus callosum, optic tracts, and olfactory bulbs.

Holoprosencephaly

Central nervous system

- Semilobar presents with
 - singular ventricular cavity with partial formation of the occipital horns
 - partial or complete fusion of the thalamus
 - a rudimentary falx and interhemispheric fissure
 - absent corpus callosum, cavum septum pellucidum, and olfactory bulbs.

Holoprosencephaly

Central nervous system

- Lobar holoprosencephaly
 - there is almost complete division of the ventricles with a corpus callosum that may be normal, hypoplastic, or absent
 - the cavum septum pellucidum will still be absent.

Holoprosencephaly

Central nervous system

Sonographic findings

- common C-shaped ventricle
 - may or may not be enlarged
- Fusion of the thalamus with absence of the third ventricle
- Absence of the interhemispheric fissure
- Absence of the corpus callosum
- Absence of the cavum septum pellucidum
Holoprosencephaly
Central nervous system

- associated with facial abnormalities
 - Cyclopia
 - Hypotelorism
 - absent nose
 - flattened nose with a single nostril
 - a proboscis.
 - median or bilateral clefting may be present

Agenesis of the Corpus Callosum
Central nervous system

- a fibrous tract that connects the cerebral hemispheres
- a range of complete to partial absence of the callosal fibers that cross the midline,

Agenesis of the Corpus Callosum
Central nervous system

- Associated chromosomal anomalies
 - trisomies 13, 18 and 8.
- Sonographic findings
 - Absence of the corpus callosum
 - Elevation and dilation of the third ventricle
 - Widely separated lateral ventricular frontal horns
 - Dilated occipital horns (colpocephaly)

Aqueductal Stenosis
Central nervous system

- results from an obstruction, atresia, or stenosis of the aqueduct of Sylvius causing ventriculomegaly
- Sonographic findings
 - lateral Ventricular enlargement
 - Third ventricular dilation

Vein of Galen Aneurysm
Central nervous system

- rare arteriovenous malformation
 - vein is enlarged and communicates with normal-appearing arteries.
- usually isolated anomaly, has been associated with
 - congenital heart defects
 - cystic hygromas
 - hydrops.

Vein of Galen Aneurysm
Central nervous system

- Sonographic findings
 - space that may be irregular in shape and is located midline and posterosuperior to the third ventricle
 - Turbulent flow with Doppler evaluation
Choroid Plexus Cyst
Central nervous system

- round or ovoid anechoic structures found within the choroid plexus
- common - identified in approximately 1% of antenatal ultrasound examinations
- not associated with other anomalies
 - often resolve by 22 to 26 weeks of gestation

Choroid Plexus Cyst
Central nervous system

- ranging in size from 0.3 to 2 cm
- Unilateral or bilateral cysts
- Solitary or multiple
- Unilocular or multilocular
- Enlargement of the ventricle with large cyst

Choroid Plexus Cyst
Central nervous system

- Choroid plexus cysts have been identified in association with aneuploidy, most commonly trisomies 18 and 21.
- sonographic survey for anomalies that might suggest aneuploidy should follow identification of a choroid plexus cyst

Choroid Plexus Cyst
Central nervous system

- survey of the heart, and a survey of the feet and hands to look for abnormal posturing and polydactyly.
- Amniocentesis for karyotyping may be offered

Porencephalic Cysts
Central nervous system

- Porencephalic cysts, also known as porencephaly
 - cysts filled with cerebrospinal fluid that communicate with the ventricular system or subarachnoid space.
- may result from
 - hemorrhage, infarction, delivery trauma, or inflammatory changes in the nervous system.

Porencephalic Cysts
Central nervous system

- brain parenchyma undergoes necrosis, brain tissue is resorbed, and a cystic lesion remains.

Sonographic findings
- cyst within the brain parenchyma without mass effect
- Communication of the cyst with the ventricle or subarachnoid space
- Reduction in size of the affected hemisphere
Hydranencephaly
Central nervous system
• destruction of the cerebral hemispheres by occlusion of the internal carotid arteries.
 – Brain parenchyma is destroyed and is replaced by cerebrospinal fluid

Hydranencephaly
Central nervous system
• may be associated with polyhydramnios
• etiology usually involves congenital infection or ischemia.
 – cytomegalovirus and toxoplasmosis

Hydranencephaly
Central nervous system
• Sonographic findings
 – Absence of normal brain tissue with almost complete replacement by cerebrospinal fluid
 – An absent or partially absent falx
 – Presence of the midbrain, basal ganglia, and cerebellum

Ventriculomegaly (Hydrocephalus)
Central nervous system
• Ventriculomegaly - dilation of the ventricles within the brain.
• Hydrocephalus occurs when ventriculomegaly is coupled with enlargement of the fetal head.
• Enlargement of the ventricles → obstruction of cerebrospinal fluid flow.

Ventriculomegaly (Hydrocephalus)
Central nervous system
• If the result of aqueductal stenosis it is referred to as noncommunicating hydrocephalus.

Ventriculomegaly (Hydrocephalus)
Central nervous system
• obstruction may be outside of the ventricular system, such as with an arachnoid cyst, and is referred to as communicating hydrocephalus.
Ventriculomegaly (Hydrocephalus)
Central nervous system
• when an obstruction occurs the ventricles dilate as the flow of cerebrospinal fluid is blocked.
• Enlarged ventricles exert pressure on the brain tissue
 – sometimes producing irreversible brain damage.

Ventriculomegaly (Hydrocephalus)
Central nervous system
• manifestation of a syndrome or chromosomal abnormality.
 – associated with trisomy 21, and identified in trisomies 13 and 18.

Ventriculomegaly (Hydrocephalus)
Central nervous system
• may be quantitated by measuring the ventricular atrium across the glomus of the choroid plexus.
 – considered dilated when its diameter exceeds 10 mm

Ventriculomegaly (Hydrocephalus)
Central nervous system
• Sonographic findings:
 – Lateral ventricular enlargement exceeding 10 mm
 – A “dangling choroid sign” gravity-dependent choroid plexus
 – Possible dilation of the third and fourth ventricles
 – Fetal head enlargement when the BPD and HC exceed those for the established gestational age

Ventriculomegaly (Hydrocephalus)
Central nervous system
• 80% of fetus with ventriculomegaly have associated anomalies
• surveyed for defects involving
 – the face, heart, kidneys, abdominal wall, thorax, and limbs.
• amniocentesis to rule out chromosomal anomalies
• laboratory tests to rule out congenital infections.

Microcephaly
Central nervous system
• abnormally small head that falls 2 standard deviations below the mean.
• occurs because the brain is reduced in size
Microcephaly
Central nervous system

- Teratogens linked with microcephaly
 - congenital infections (rubella, toxoplasmosis, cytomegalovirus)
 - maternal alcohol abuse
 - heroin addition
 - mercury poisoning
 - maternal phenylketonuria
 - Radiation
 - hypoxia.

Microcephaly
Central nervous system

Sonographic findings

- Measurements include
 - BPD
 - OFD
 - HC

- Ratios comparing the head to other parameters – helpful

- Serial measurements should be performed monthly